Transformations of Sinusoidal Functions

These notes are intended as a summary of section 6.6 (p. 529 - 534) in your workbook. You should also read the section for more complete explanations and additional examples.

Recall

Sinusoidal functions have the form

$$
y=a \sin b(x-c)+d \quad \text { or } \quad y=a \cos b(x-c)+d
$$

The values of a, b, c, and d describe certain properties of the sinusoidal function, as described below:

$$
\begin{aligned}
& \text { Amplitude }=|a| \\
& \text { Period }=\frac{2 \pi}{b} \\
& \text { Phase Shift }=c
\end{aligned}
$$

Equation of center line: $y=d$

The location of the zeros depends on several factors. It is even possible for a sinusoidal function to have no zeros.

Graphing Sinusoidal Functions

In general, when graphing sinusoidal functions, use the following procedure:

1. Draw the center line (as a dotted line) at $y=d$.
2. Use the amplitude (a) and the center line to label the minimum and maximum.
3. Find the period of the function $\left(\frac{2 \pi}{b}\right)$ and divide it into 4 equal sections.
4. Sketch the graph without a phase shift (as a dotted line).
5. Apply the phase shift and draw the final graph.

Example (not in workbook)

Sketch the graph of $y=2 \cos 2\left(x-\frac{\pi}{4}\right)-2$ for $-2 \pi \leq x \leq 2 \pi$.

Example 1 (sidebar p. 532)
a) Predict how the graph of $y=\frac{1}{4} \cos 3\left(x+\frac{\pi}{6}\right)+2$ is related to the graph of $y=\cos x$.
b) Sketch the graph of $y=\frac{1}{4} \cos 3\left(x+\frac{\pi}{6}\right)+2$ for $-2 \pi \leq x \leq 2 \pi$, then list the characteristics of the function.

Example 2 (sidebar p. 533)

Write an equation for the sinusoidal function graphed below, in terms of $\sin x$.

Homework: \#3-11 in the exercises (p. 534 - 540). Answers on p. 540.

